

CSCI 4265: Formal Methods in Software Engineering

2022 Winter Session			
Total Class Sessions: 25	Instructor: Staff		
Class Sessions Per Week: 6	Classroom: TBA		
Total Weeks: 4	Office Hours: TBA		
Class Session Length (Minutes): 145	Language: English		
Credit Hours: 4			

Course Description:

This course will enable students to study formal methods used for the analysis of software systems to ensure software's qualities, including formal methods for specifying, validating and verifying the software systems. Topics cover formal methods used in software architecture, cleanroom software engineering, formal methods in Agent- Oriented software, robotics and integrated formal methods, applying formal methods for software engineering, reconstructing software architecture, formal method techniques, and software quality Assurance

Prerequisite: Foundations of Computer Science, Data Structures and Algorithms, Computer System Organization.

Learning objectives:

- 1. Understand the basic formal methods used in software engineering
- 2. Use formal techniques for software architecture
- 3. Learn in depth of formal methods in Intelligent System
- 4. Use formal techniques in reconstructing the Software Architecture
- 5. Develop basic understanding of algebraic formal methods, and advanced formal method.
- 6. Learn Alloy Analyzer.

Course Materials:

1. Logic in Computer Science by Michael Huth and Mark Ryan, 2nd ed., ISBN 0-521-54310- X

- 2. Software Reliability Methods by Doron Peled, ISBN: 0-387-95106-7
- 3. Discrete Structures, Logic, and Computability by James Hein, ISBN: 0-7637-1843-2

4.Model Checking by Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled, ISBN: 0-262-03270-8

- 5. Principles of the Spin Model Checker by Mordechai Ben-Ari, ISBN: 978-1-84628-769-5
- 6. Software Abstractions by Daniel Jackson, ISBN: 0-262-10114-9
- 7. Mathematical Theory of Computation by Zohar Manna, ISBN: 0-486-43238-6
- 8. Systems and Software Verification by Beatrice Berard, Michel Bidoit et al., ISBN: 3-540-

41523-8

Course Format and Requirements:

The course will take place in a computer lab and the course format including lecture, programming project, and in-class discussion.

The specific topics that will be covered in the classes are listed in the course syllabus. The class period will consist of an active learning environment. During a majority of the class time, students will be actively working on problems under the instructor's guides. Attendance:

Attendance will not be taken but is strongly recommended. Each student will have three allowed absences and no grade deduction will be made for the first three absences. More than three unexcused absences will result in an automatic reduction in your participation grade, for instance from A- to B+. Your active participation in the class is expected and encouraged.

Course Assignments:

Quizzes:

There will be 5 quizzes this semester, given during the discussion sections. Each quiz will be on the material covered that week. There will be NO make-ups for quizzes for any reason. All of the quizzes will be closed book.

Midterm Exam:

The in-class, close-book and non-cumulative midterm exam will be given through this course. The midterm exam will be based on the knowledge covered in class. No excuse will be accepted if students do not have legitimate excuses for absence. Physician Statement is required for missing the exam due.

Weekly Projects :

There will be four hands-on projects based on course need. It will count for 40% of your grade for the course. The projects will enrich students' knowledge on writing large programs. The score will be given based on the correctness of the program.

Final Exam:

The final will be in-class, cumulative and close-book. The final exams will be based on concepts covered in class. Note that the final will not be taken during the normal class times. Exact time and location for final will be announced later.

Course Assessment:

Quizzes	15%
Weekly Projects	35%
Midterm Exams	20%

Chengdu University of Technology

Final Exam	30%
Total	100%

Grading Scale (percentage):

A+	Α	А-	B +	B	B-	C+	С	C-	D+	D	D-	F
98-	93-	90-	88-	83-	80-	78-	73-	70-	68-	63-	60-	<60
100	97	92	89	87	82	79	77	72	69	67	62	

Academic Integrity:

Students are encouraged to study together, and to discuss lecture topics with one another, but all other work should be completed independently.

Students are expected to adhere to the standards of academic honesty and integrity that are described in the Chengdu University of Technology's *Academic Conduct Code*. Any work suspected of violating the standards of the *Academic Conduct Code* will be reported to the Dean's Office. Penalties for violating the *Academic Conduct Code* may include dismissal from the program. All students have an individual responsibility to know and understand the provisions of the *Academic Conduct Code*.

Special Needs or Assistance:

Please contact the Administrative Office immediately if you have a learning disability, a medical issue, or any other type of problem that prevents professors from seeing you have learned the course material. Our goal is to help you learn, not to penalize you for issues which mask your learning.

Course Schedule:

Module	Торіс	Activity
1	Go through syllabus and introduction to the course	
	Introduction to Formal Methods	Quiz 1
	Testing and Quality Assurance	
	 Comparative Formal Methods 	
	 Specification techniques and formal specification 	
	 Software Integration and Documenting 	
	 Formal Semantic 	
2	Cleanroom Software Engineering	
		Quiz 2

Chengdu University of Technology

	 Verification and Validation 	Weekly project			
	 Formal Methods in Agent-Oriented Software 				
	Formal Methods Model Checking and Testing				
	 Describing Syntax and Semantics 				
	Advanced Formal Methods				
3	Robotics and Integrated formal Methods	Quiz 3			
	Formal Methods of Development	Weekly project			
	 Formal Methods for Requirement Engineering 				
	 Formal Methods in Software Engineering 	Midterm Exam			
	 Algebric Formal Methods 				
	 Formal Method Diffusion 				
_	 Creating a Skeletal Structure 				
4	Reconstructing the Software Architecture				
	Re-Engineering and Reuses of Software	Ouiz 4			
	 Formal Methods: Requirements Techniques 	$\tilde{\omega}$ Weekly project			
	Applying Formal Method for Software				
	 Vulnerabilities detection 				
	> Applying formal Methods for Software				
	Formal Methods: A Road map				
5	Software Quality Assurance	Quiz 5			
	Program verification	Weekly Project Final Exam			
	 Symbolic Evaluation 	(Cumulative): TBA			
	Alloy Analyzer				
	 Behavior Trees Syntax and Semantics 				
	Final Overview				
	Review for Final Exam				